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CHARLES J. COLBOURN, SPYROS S. MAGLIVERAS, AND D. R. STINSON 

ABSTRACT. There are 172,248 Steiner triple systems of order 19 having a non- 
trivial automorphism group. Computational methods suitable for generating 
these designs are developed. The use of tactical configurations in conjunction 
with orderly algorithms underlies practical techniques for the generation of the 
designs, and the subexponential time isomorphism technique for triple systems 
is improved in practice to test isomorphisms of the designs. The automorphism 
group of each of the triple systems is computed, and a summary presented of 
the number of systems with each possible type of automorphism. 

1. STEINER TRIPLE SYSTEMS AND THEIR GROUPS 

A Steiner triple system of order v , briefly STS(v), is a pair (V, NJ), where 
V is a set of v elements and F is a set of 3-element subsets of V, with the 
property that every 2-subset of V appears in exactly one subset of SW. Sets 
in W are triples. An automorphism of an STS(v) is a permutation on V that 
maps each triple in W to a triple of W, and the automorphism group is the 
group of all automorphisms of the STS. 

Steiner triple systems with nontrivial automorphisms have been studied for 
many reasons. Not least among these is the fact that Steiner triple systems 
are too numerous to examine exhaustively, even for order 19. In fact, Stinson 
and Ferch [20] have shown that the number of nonisomorphic STS(19) is at 
least 2, 395, 687 and estimate the exact number to be on the order of 109. 
For this reason, much effort has been concentrated on STS( 19) with additional 
properties. 

Bays [1] enumerated the four STS( 19) having a cyclic automorphism in 1932. 
More recently, Denniston [8] generated the 184 nonisomorphic STS(19) with a 
reversal, i.e., an automorphism fixing one element and mapping the rest in nine 
2-cycles. Phelps and Rosa [13] generated the ten nonisomorphic STS(19) hav- 
ing a 2-rotational automorphism, i.e., an automorphism fixing one element and 
mapping the remainder in two 9-cycles. Using Gelling's list of 1-factorizations 
of order ten [9] and properties of their automorphism groups, Stinson and Seah 
[21] determined that the number of STS(19) having a subsystem of order 9 is 
precisely 284, 457. See Prince [14, 15] for some related results on the enumer- 
ation of STS(19). 
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In this paper, we examine all possible nontrivial automorphisms that an 
STS(19) can admit. We determine a minimum subset of basic automorphisms 
that must be considered in order to generate all STS(19) having a nontrivial 
automorphism group. For each basic automorphism, we develop computational 
methods to generate all nonisomorphic STS(19) having the specified automor- 
phism; finally, we determine the full automorphism group of each. This permits 
us to determine the total number of nonisomorphic STS( 19) having a nontrivial 
automorphism group, namely 172,248. We present the computational results 
in ?3, giving all those systems having group order at least 9. 

Let 7r be a permutation of 19 symbols. We say that 7r has type a" ... ant 
if 7r contains ni cycles of length as, for 1 < i < t. It is easy to see that an 
appropriate power of 7r has type n am, where a is prime, for some n, a, and 
m such that n + am = 19. Now, the set of fixed points of any automorphism 
forms a subsystem of the STS(19); hence, n e {0, 1, 3, 7, 9} . 

We can rule out the case n = 9 as follows. If there existed an automorphism 
of an STS(19) having nine fixed points forming a subsystem, then deletion of 
these nine points would yield a one-factorization of Klo having an automor- 
phism fixing every one-factor. However, it is not difficult to prove that there 
exists a one-factorization of K2n having an automorphism that fixes every one- 
factor if and only if n is even: 

Lemma 1.1. For n > 2 there exists a 1-factorization of K2n having a nontrivial 
automorphism that fixes every factor if and only if n is even. 

Proof. Suppose that F1, F2, ..., F2n-I is a 1-factorization of K2n, n odd, 
and that 7r is an automorphism that fixes every factor. If 7r has a fixed point 
x, since every factor is fixed, every edge containing x is fixed, and then 7r is the 
identity automorphism. Otherwise, without loss of generality, 7 has type tu for 
t > 2 and tu = 2n . Now if t > 2, consider an orbit (xo, ... , xt- 1) of elements 
under 7 . Suppose that {xo, xi } e Fi . Then, since 7r is an automorphism, 
{xl, x2} e Fi, and Fi is not a 1-factor; this ensures that t < 2. Hence, it 
remains to treat the case when 7r has type 2n . 

Let 7r = (12)(34) .(2n - 12n). Call edges of the form {2i - 1, 2i}, 
(1 < i < n) inside edges, and the rest outside edges. Every orbit of inside edges 
under 7r has one, and every orbit of outside edges has size two. Since each 
factor has an odd number of edges, it has an odd number of inside edges. But 
there are 2n - 1 factors and only n inside edges. Thus, for n > 3, 57 cannot 
have type 2n . 

Conversely, suppose n is even and write n = 2m. We shall construct a 1- 
factorization of K4m on the vertex set {oc, oc', 0, 1, .. ., 2m-2, 0', 1',.... 
(2m - 2)'}. The one-factors are as follows. First, define M to be the factor 
{{oo, oo'}} u {{j, j'}: 0 < j < 2m - 2}. Next, define factors 

Fo = {{oc, 0}, {of', '}} 

u {{j, 2m - 1 - j}, {j', (2m - 1 - j)'}: 0 < j < m - 1} 

and 

Go= {{oo, 0'}, {oo', 0}} 

u {j, (2m - 1 - j)'}, {j', 2m - 1 - j}: 0 < j < m - 1}. 
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Then, for 1 < i < 2m - 2, define Fi (respectively Gi) to be the factor i + Fo 
(resp. i + Go) developed mod 2m - 1 . It is easy to see that 

- = {M} U {FF: 0 < i < 2m - 1} U {Gi: 0 < i < 2m - 1} 

is a 1-factorization of K4m El 

Since 5 is odd, there is no automorphism of an STS(19) that fixes nine 
points. Hence, we restrict our attention to automorphisms of the type 1lnam, 
where n e {0, 1, 3, 7} and a > 2 is prime. Such an automorphism is called 
a basic automorphism. 

Thus, the basic automorphisms that we must consider are those of types 
191, 1129, 1136, 1328, 1726, and 1734. The first two are the cyclic and 
reverse automorphisms treated by Bays [1] and Denniston [8], respectively. The 
remainder have not previously been treated, although the 2-rotational STS( 19) 
[ 13] (having an automorphism of type 11 92) are a small fraction of those having 
an automorphism of type 11 36. 

To generate all nonisomorphic STS(19) having a nontrivial automorphism 
group, it suffices to generate all nonisomorphic STS(19) admitting each of the 
six basic types of automorphisms. In ?2, we discuss methods suitable for this 
task. 

2. COMPUTATIONAL METHODS 

For a basic automorphism ir, our computational task devolves naturally into 
two phases: generating a complete list of solutions, and extracting one represen- 
tative of each isomorphism class. The problems associated with poor isomorph 
rejection during the generation phase have been discussed extensively (see, for 
example, [16]), so we do not belabor the issue here. We employed three main 
methods (carrying out a number of the computations independently, using dif- 
ferent methods). 
2.1. Tactical decompositions. The primary method we employed proceeds as 
follows. Suppose that 7r is a permutation, and that we are to generate all 
STS having 7r as an automorphism. Let Pi, ... , ps be the point-orbits, and 
b, ... , bu the block-orbits under ir, of lengths n,1, ..., nS and mi1, ... , mu, 
respectively. For 1 < j < u, let B1 be any block in bj . We define the tactical 
decomposition of the STS with respect to 7r to be the s x u matrix Tn = (tij) 5 

where tij = lpi n Bj I. If r = (v - 1 )/2 is the number of blocks passing through 
any given point of the STS, it is easy to see that 

1. for 1 <i<s, EZu=ltiqmq =rni, 
2. for 1 <i, j<s, iJ, Equ=ltiqtjqMq =ninj, 
3. for 1 < i < s, Eul (tQ)mq= (n) 

It is convenient to view a tactical decomposition of an STS as a collection 
of u multisets of the elements {Pl, ... , p, }, where the columns of Tn = (tij) 
are the characteristic vectors of the multisets. In particular, tij specifies the 
multiplicity of pi in the jth multiset. 

We restrict our attention only to possible basic automorphisms; thus, the 
order of 7r will be 19, 3, or 2. We then observe the following. 

1. For 1 < i < s, if ni = 2, there is exactly one multiset of the form 
{pi, Pi, pj }. Here we must have nj = 1 . This multiset corresponds to a fixed 
block under 7t. 
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2. If ni = 3, then the total number of occurrences of {pi, pi} among the u 
multisets is three, counting {Pi, pi, pi} as three occurrences. 

3. If ni = 19, then the total number of occurrences of {pi, Pi} among the 
multisets is nine, counting {Pi, Pi, pi } as three occurrences. 

Let us consider the tactical decompositions for the basic automorphisms of 
STS( 19). For 191 , there is a unique tactical decomposition, having one point- 
orbit and three multisets of the form {Pi Pi , Pi } . For 11 29 , a tactical decom- 
position has ten point-orbits Pi, . ..., Plo, with n, = = ng = 2 and n1o = 1. 
It follows from the definition that it has a multiset of the form {pi, pi, PIo} for 
each 1 < i < 9, and that it has 24 further multisets of the form {Pi, Pi, Pk} 

with 1 < I< j < k < 9. These 24 multisets must cover every unordered pair 
{Pi, pj } twice, and hence they are the triples of a twofold triple system of order 
9. Denniston [8] observes that such a twofold triple system, in order to form 
the tactical decomposition of an STS(19), cannot have repeated blocks; hence, 
there are 13 nonisomorphic tactical decompositions to be considered [10]. 

For type 1136, we have seven point-orbits Pi, ,p-, with n1 = = 

n6= 3 and n7 = 1 . Without loss of generality, we may assume that we have 
multisets of the form {P2i- 1 , P2i, , p7} for 1 < i < 3 to dispense with the 
occurrences of p7. Then we may have 0, 3, and 6 occurrences of multisets of 
the form {pi, pi, pi} . In addition, every pair {pi, pj} with i :$ j must be 
covered three times in total. We generated all tactical decompositions using 
an orderly algorithm (see ?2.3 later), and used a naive 6! algorithm to deter- 
mine the isomorphism of the resulting decompositions. There are 244 tactical 
decompositions in this case. 

For type 1328, a tactical decomposition has 11 point-orbits Pi, pi , Pi1 

with nI = = n8 = 2 and n9 = nio = n11 = 1. The occurrences of p9, 
PIo, and PI 1 exhaust all pairs of the form {pI, pi}, along with a collection of 
pairs on {Pl, ... , P8} that has each element in two pairs of the collection. So 
the multisets of the form {Pi, Pi, Pk} with 1 < i < j < k < 8 form a partial 
twofold triple system 97 with 2-regular leave (see [3] for information on leaves). 
Now, if ?' has a repeated block {Pi, Pi, Pk }, any STS( 19) leading to the 
tactical decomposition must have six point-orbits carrying four triples of which 
two are disjoint, which cannot exist; so we may assume that ?' is simple. We 
did not generate the entire tactical decomposition here, but rather just generated 
the portion 97, that is, simple partial twofold triple systems of order 8 with 
2-regular leave. For this purpose, it suffices to consider the isomorphism type 
of the partial twofold triple systems obtained by dropping each point in turn 
from each of the 36 nonisomorphic twofold triple systems of order 9 [10]. Then 
we used McKay's isomorphism program nauty [11] to determine that there are 
85 nonisomorphic simple partial twofold triple systems of order eight with 2- 
regular leave. 

For type 1734, a tactical decomposition has eleven point-orbits Pi, p. , Pi 1 

with nI = n2 = n3 = n4 = 3 and n5 = = nII = 1. Since there are 57 
triples in an STS(19), and seven appear on the seven fixed points, it follows 
that there must be precisely two multisets of the form {pi, pi, pi } in a tactical 
decomposition. In fact, in this case, it is easy to generate all partial triple 
systems on 19 points with an automorphism of type 1734 that cover all pairs 
except those lying on the fixed points; there are ten nonisomorphic such partial 
triple systems of order 19. 
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For the last case, of type 1726, we examined that portion of the tactical 
decomposition containing the multisets having at least two of their point or- 
bits representing the orbits of size two. Using a brute-force 6! isomorphism 
algorithm to eliminate duplicates this led to 82 nonisomorphic partial tactical 
decompositions. 

Once the tactical decompositions are found, there remains the problem of 
"filling" or "covering" the tactical decomposition to obtain all nonisomorphic 
STS(19) having the given tactical decomposition. Formally, given a tactical 
decomposition, we construct a set of elements {vij: 1 < i < s, 0 < j < ni}. 
Then for each multiset {Pi, Pj, Pk} in turn, and for each 0 < a < ni, 0 < b < 
nj1, 0 < c < nk, we choose {Via, Vjb, Vkc} as the orbit representative of the 
multiset. This gives a set of orbit representatives (actually a large number of 
them in general) for an STS( 19) having the specified tactical decomposition. 

Some isomorph rejection is easily introduced in this covering procedure; par- 
ticularly, we may choose arbitrarily one of a, b, or c to be 0. If i = j, we 
may take a = 0 and b < ni/2; and if i = j = k, we may take a = 0, 
b < ni - c, 2b < c. It is also possible to use the automorphisms of the partial 
STS constructed so far to determine that other distinct choices lead to isomor- 
phic solutions; in general we did not use the automorphisms of the system as 
it was built, excepting of course the automorphism used in forming the tactical 
decomposition, which must be preserved. 

Some other general observations are useful here. On the fixed points we 
must place a subsystem. We have 0, 1, 3, or 7 fixed points; there is but one 
way to place a subsystem of order 1 or 3. There are 30 distinct ways to place a 
subsystem of order 7. Our strategy was to leave the subsystem unspecified until 
the very last step, and to determine the Steiner triple system with a hole in all 
nonisomorphic ways. Thus, we elected to fill partial tactical decompositions, 
omitting the multisets on the fixed points; in the case of 1328, we went further 
and omitted all multisets involving the fixed points. 

For 1734, as we remarked earlier, we obtained ten nonisomorphic partial 
STS(19) having a 7-hole on the fixed points. For 1726, the 82 tactical decom- 
positions led to 2,729 partial STS( 19) having a 7-hole on the fixed points. 
For 1328, since we omitted the multisets containing the three fixed points, fill- 
ing the partial tactical decompositions leads to partial Steiner triple systems of 
order 16 having an automorphism of type 28 and having 3-regular leave. The 
number of nonisomorphic such systems was found to be 1 , 832. All of these 
isomorphism computations were done using nauty [11]. 

In all cases but 1328, it is routine at this point to find a complete list of 
all STS(19) with the desired automorphism. For the remaining case, we de- 
termined by a simple backtracking algorithm all ways to partition the 3-regular 
leaves into three 1-factors in such a way that the automorphism of type 28 is 
preserved. Then adding three fixed points, forming triples with the three 1- 
factors, and placing a triple on the three fixed points, gives a complete list of 
all of the systems. 

Unfortunately, filling a tactical decomposition, or filling a hole in a partial 
system in all possible ways, may lead to duplication in the STS that result. Until 
this point, we have resorted to a brute-force isomorphism test for very small 
problems, and to nauty for more substantial ones. However, in cases 1328 and 
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1726, there remain approximately 90,000 STS for which isomorphism must be 
checked. Hence we required a very fast method to determine isomorphism. 

2.2. Testing isomorphism of STS. In this section, we give a short description 
of Miller's algorithm for testing isomorphisms of STS(n) [12]. This algorithm 
has also been studied in [4, 19, 7], and has been found to be quite fast for 
practical isomorphism testing. We first outline the algorithm, and then describe 
some improvements. 

Let X be the n-set {1, 2, ... , n}. Let A = {xl , yi, zl} and B = {X2, Y2, 

Z2} be two 3-subsets of X, where xl < yv < z1 and x2 < Y2 < Z2. We 
define a lexicographical ordering on the 3-subsets of X by saying that A < B 
if Yi < Y2; or Yi = Y2 and xl < x2; or Yi = Y2, xI = x2, and Z1 < Z2 
(note that this is a different lexicographical ordering than was used in [19, 7]). 
Now, let (X, ?-) and (X, ?2) be two STS(n). Denote -I = {All, ... Alb, 
and ?2 = {A21, ... , A2}, where b = n(n - 1)/6, All < A12 < < Al,b 
and A21 < A22 <. < A2b . Then, define -W < ?2 if there exists an integer j 
(1 <j < b) such that Ali =A2i for 1< i <j, and Alj <A2j. 

Suppose (X, ?) is an STS(n) and 7r is a permutation of X. Define An = 

X": x e A} for A e X, and V = fAl:A e JX}. We say that (X,? ) 
is canonical if ? < - I for every permutation 7t. The canonical form of 
the STS (X, ?) is the (unique) STS (X, -I) that is canonical. It is easy 
to see that two STS(n) on the same point set, say (X, ?-) and (X, ?2), are 
isomorphic if and only if they have the same canonical forms. 

Let 1 < m < n . Define a partial labelling of rank m to be a partial permu- 
tation 0 of {1, 2, ... , n} such that Idom(0)I = m and {x0: xedom(0)} = 

{1, 2, ... , m}. A point x e dom(6) is said to be labelled. If A is a block 
containing precisely two labelled points, say x and y, define AO' = {x0, y0 . 

The algorithm iterates two steps, called "forcing" and "choosing," until all 
elements have been labelled. Suppose 0 is a partial labelling of rank m, and 
suppose there exists at least one block containing exactly two labelled points. Of 
these blocks, let M(0) denote the block A such that AO' is lexicographically 
least, and let z be the unlabelled point in A. Suppose 7r is any permutation 
that extends 0, and suppose that (X, 5 _) is the canonical form of (X, ?) . 
Then, it is easy to see that zn = m + 1 . This operation is called "forcing." 

When a forcing operation cannot be done, it must be the case that the labelled 
points form a subsystem of the original STS(n). Whenever this happens, we 
take each unlabelled point z in turn, assign zH = m + 1, and then applying 
forcing operations. This is called a "choosing" operation. 

A labelling produced by a succession of "forcing" and "choosing" operations, 
as described above, is called a candidate labelling. The number of candidate 
labellings is 0(nlogn), a significant improvement over O(n!). 

Even though we are unable to improve the asymptotic running time, we have 
some further improvements, which speed up isomorphism testing in practice. 
First among these observations is that we can often reject a partial labelling, 0, 
as the algorithm is executing. Suppose 7r denotes the "best" candidate labelling 
at any stage during the execution of the algorithm. Then, at any time in the 
algorithm, we can compare the partial system consisting of all AO such that 
A is a labelled block to the corresponding set of blocks in -I, and abandon 
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all extensions of 0 if the partial system is already lexicographically larger than 
that in VI . 

The second observation leads to a further restriction on the number of la- 
bellings that need to be considered. For a given candidate labelling ir, define 
r(7) to be the number of "choosing" steps that were made in producing ir, 
and define s(7) = (Sl, *., sr) to be the sequence of values m for which 
the symbols {1, ..., m} induce a subsystem of _V. In the case n = 19, 
the possible sequences that can occur are (0, 1, 3, 19), (0, 1, 3, 7, 19), and 
(0, 1, 3, 9, 19). Suppose we consider only those candidate labellings ir for 
which 

1. r(7r) is minimum, and 
2. s(7r) is lexicographically minimum among all candidate labellings for 

which r(7r) is minimum. 
Denote the set of candidate labellings satisfying the above two conditions 

by H1(sV). Then it is not difficult to show that, if (X, -W) and (X, 2) are 
isomorphic, then 

/f-Wi 7f e rI(-V)} = fV2 7r E (V2)}. 

Also, if (X, ?-) and (X, 2) are not isomorphic, then the two sets are disjoint. 
This means that we can define the canonical form of an STS(n), (X, 52) 
relative to the candidate numberings in rI(s) (but observe that this may not 
yield the same canonical form as was defined earlier). 

Given any STS( 19) , we can show that there must exist at least one candidate 
labelling 7r such that r(7r) = 4 and hence s(7r) = (0, 1, 3, 19). Consequently, 
we can abandon any partial labelling as soon as any subsystem of order 7 or 9 
is generated. This is a result of the nonexistence of a Steiner space of order 19 
[22]. 

We used this algorithm to compute the canonical forms and automorphism 
groups for over 200 , 000 systems that were generated in the course of the 
computations. Our experience is that, except for the two designs with the largest 
automorphism groups, this method outperformed nauty applied to the element- 
block incidence graph. When the system has a group of order 2, our labelling 
algorithm was an order of magnitude faster. In fairness to the general program 
nauty, however, we remark that we did no initial partitioning of the triples using 
isomorphism invariants, and this would surely have accelerated its computation. 

2.3. Orderly algorithms. In essence, the use of tactical decompositions employs 
isomorph rejection at four stages: some isomorph rejection in generating tac- 
tical decompositions, complete isomorph elimination on the resulting tactical 
decompositions, some isomorph rejection in filling the decompositions to form 
STS(19), and complete isomorph elimination on the resulting STS(19). There 
is a tradeoff between the amount of effort invested in isomorph rejection during 
generation, and isomorph elimination of the resulting configurations. 

Read [16] proposed a class of orderly algorithms that do complete isomorph 
rejection during the generation, and hence obviate the need for any isomorph 
elimination thereafter. His key idea is to generate objects in some canonical 
form, and to retain during the generation only those partial configurations that 
lead to canonical forms. See [16, 6] for more information an orderly algorithms 
for graphs, and [17, 18] for more information on orderly algorithms on designs. 
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We employed orderly algorithms in the generation of tactical decompositions; 
but for generating STS(19) directly, we found the methods to be slower than 
the approach using tactical decompositions for the basic automorphisms 11 36, 

1328, and 1726. Our experience is at variance with the observed improvement 
obtained in generating graphs using orderly algorithms [2]. The reasons are 
not entirely clear. However, one cause seems evident. In generating graphs by 
adding an edge, the result is always a graph. However, adding an orbit of triples 
to a portion of an STS(v) , the result need not be a portion of an STS(v) at all- 
it may have no completion to an STS(v) . Thus an orderly algorithm may invest 
a substantial amount of time checking canonicity for partial configurations that 
cannot be extended to obtain solutions; and it may retain many canonical partial 
configurations that cannot be extended to solutions. The essential contribution 
in using tactical decompositions is that many of these nonextendable partial 
configurations do not arise from any tactical decomposition; hence the initial 
effort to generate all tactical decompositions can be seen as an effort to curtail 
the search by eliminating large classes of nonextendable partial solutions. 

As we have remarked, orderly algorithms can also be used in conjunction 
with tactical decompositions (both in generating and in filling them). For filling 
tactical decompositions, however, we did not employ orderly techniques. The 
reason is simple: we did not find a canonicity check whose computation for 
partial systems was competitive with the algorithm of ?2.2 for full systems, and 
hence the canonicity check incurred more computational expense during filling 
than it saved during elimination. There may be either a better strategy for filling 
a tactical decomposition, or a more computationally practical canonicity check, 
but we did not explore this. 

2.4. An algebraic approach. Colbourn, Magliveras, and Mathon [5] generated all 
STS(27) with transitive automorphism group; their strategy generates STS(v) 
with a given group directly, using extensive but not complete isomorph rejection, 
followed by complete isomorph elimination. We examine a similar strategy 
here. 

Let A23 be the (19) x (19) (O, 1)-matrix with rows indexed by unordered 
pairs, and columns indexed by unordered triples on a 19-set, and having 
A23(i, j) = 1 if the ith pair occurs in the jth triple, and 0 otherwise. A 
(0, 1)-solution of the matrix equation A23 U = 1 gives the characteristic vector 
of an STS(19). 

Now let A = A23(F), for a permutation group F on 19 symbols, be the 
matrix whose rows are indexed by orbits of pairs under F, and whose columns 
are indexed by orbits of triples under F. A (i, j) is the number of times that a 
fixed pair in the ith orbit of pairs appears in any triple of the jth orbit of triples. 
Reduce A by removing all of those columns that contain an entry larger than 
1 such an orbit of triples can surely not appear in an STS( 19) having group F. 
Then a {0, 1 }-solution to the matrix equation AU = I gives the characteristic 
vector U of a set of orbits of triples under F whose union is an STS( 19) 
whose automorphism group contains F. Some immediate isomorph rejection 
is possible. As noted in [5], applying a permutation 7r in the normalizer of 
F in the symmetric group on 19 letters to an STS(19) carries the STS to 
an isomorphic, but possibly distinct, STS. Since we are interested only in 
nonisomorphic solutions, we consider the action of the normalizer on the orbits 
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of triples under F (the column indices of A). Choose a representative for 
each orbit of columns under the normalizer. Then we can modify A so that 
for one fixed row, say the first, a 1 entry appears only in a column that is the 
representative of its normalizer orbit of columns. The solution of AU = 1 is 
then a binary knapsack problem (see [5]). 

We used this strategy in cases where the group F has order at least 8, veri- 
fying the results obtained using tactical decompositions. However, for smaller 
group orders, the isomorph rejection in this approach seems to be too weak, 
causing millions of distinct STS to be generated. The reason is perhaps clear: 
after a selection of orbit of triples is made to cover the orbit of pairs indexing 
the first row, there is a large number of selections remaining for the remaining 
rows. In the normalizer, the stabilizer of the chosen orbit may map the remain- 
ing columns in nontrivial orbits; we are treating each column in such an orbit as 
being different, but isomorphic STS will result from their selection. The use of 
the normalizer at every step in the computation merits investigation. Neverthe- 
less, this approach has the same drawback as orderly methods in incorporating 
such strong isomorph rejection, in that substantial effort may be invested on 
partial solutions that lead to no STS. 

3. STS(l 9) WITH NONTRIVIAL GROUPS 

For each basic automorphism type, we generated all nonisomorphic Steiner 
triple systems of order 19 having at least one automorphism of that type, using 
the methods outlined in ?2. For the six basic automorphism types, we found 
the following numbers of nonisomorphic designs: 

191 4 
1129 184 
1136 12,021 
1328 80, 591 
1726 80,558 
1734 124 

Naturally, a number of the systems admit more than one of the basic auto- 
morphism types; we used the methods of ?2.2 both to compute the full automor- 
phism group of each system, and to determine a canonical form for each system. 
For group orders at least four, we verified the computations using nauty. Using 
the canonical forms, we determined the basic automorphism types admitted by 
each system (by checking for inclusion of the canonical form of each system 
with one automorphism type on the list of canonical forms of systems with a 
different automorphism type). 

We summarize the numbers of STS(l 9) in Table 1 as follows. First we 
partition the systems according to the order of their automorphism group. Then 
within each group order, we partition the systems into classes according to the 
subset of the basic automorphism types that the system admits; when more than 
one subset occurs, we denote the classes by letters a, b, c, ... to distinguish 
them for the subsequent discussion. For each such subset that arises, we report 
the number of STS(19) with the specified order of automorphism group and 
the specified subset of basic automorphism types. 

Given the full automorphism groups of these systems, we determined for each 
the types of all automorphisms of the systems; this permits us to determine the 
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TABLE 1. Basic automorphisms 

-Order Class 191- 1129 1136 132 J 12s JT 34 Number of STS 
432 ___ * * * *1 

171 * _ _ * _ _ _ _ _1 

144 * * *1 

108 ___ * * * *1 

96 * * *1 

57 * _ _ *2 

54 ** *2 

32 __ _* *3 

24 * * *11 

19 * _ _ _ _1 

18 a * *1 

b * **2 

c ** *6 

d **2 

16 __ _ _ * *13 

12 a * * *8 

b * *7 
c **12 

d __ _* * *10 

9 _ _ * _ _ _ _19 

8 a * *84 
_ _ _ b * _ _ _ _17 

6 a * *14 
b * *14 

c **116 

d **10 

_ _ _ e _ _ _ * *28 

4 a * *839 
b *662 
c *620 

3 a * ___11800 

_ _ _ b _ __*64 

2 a *169 
b *78907 

c _ _ _ __ _ _ *78800 

totals___ 4 184 12021 805911 80558 124 172248 

number of STS( 19) with every possible type of nontrivial automorphism. Of 
course, for the basic automorphisms, this information is given in Table 1. In 
Table 2, we give the same information for the nonbasic automorphisms. We use 
the partitioning of Table 1 again in Table 2; thus we omit the information about 
basic automorphisms, since this can be easily determined by looking in Table 
1 under the appropriate group order and class. Nevertheless, we remark that 
although two STS( 19) may have the same group order and class (same subset 
of the basic automorphisms), they need not have the same subset of nonbasic 
automorphisms. Hence, some classes of Table 1 partition further in Table 2. We 
omit those systems whose group is generated by a single basic automorphism. 
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TABLE 2. Nonbasic automorphisms 

CIls 11T92 1163 113262 112144 112182 1382 1344 132262 1 i2243 I 
432 * T I I * * * 1 
171 * I1 - 
144 I _ *_ l * * * _ * 1 
108 ____ * l_ * 1 
96 l * * 1 
57 _ ___ - 

54 * = 2 
32 _ * * __ 3 

24 ____ _ 11 

18a * T 
18b *2 
18c * 6 
18d * _ _ _ 2 

16 1 

He~~~~~ *r * 5 
12c 12 
12d *10 

9 * 

10 
8a' 84 
8b **10 

5 

6a * 14 
6b 14 
6c *104 

12 
6d *10 
8e _ _ __ _ _ _ _ _ __ _ _ _ ___ _ _28 

4a 839 
4b *498 

* ~~~~~153 
11 

4c * 48 
_____ _______ _______ _______ _____572 

totals 10 15 137 518 16 4 183 24 48 

Any type of automorphism not explicitly mentioned in Tables 1 or 2 does 
not arise as the type of an automorphism of an STS(19). In particular, all 
automorphisms of STS(19) have order 1, 2, 3, 4, 6, 8, 9, or 19. We remark 
that the number of STS(19) having an automorphism of type 1192 is ten, in 
agreement with Phelps and Rosa [1 3]; and the number of 3-rotational STS( 19) 
(type 11 63) is fifteen, in agreement with Denniston [8]. Using the algebraic 
approach of ?2.4, we generated independently all systems whose group contains 
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Z9, Z3 X Z3, or Z8, verifying in the process the number of STS(19) with an 
automorphism of type 1192, 1382, and 112182. 

Naturally, it is not reasonable to list all 172,248 systems on paper. In the 
supplement at the end of this issue, we list only those having a group of order 
at least 9 (104 nonisomorphic designs). 

It does not appear to be feasible at the present time to get an exact count of 
STS( 19) with trivial group, in order to complete the classification of STS(19). 
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